skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Siyao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lysyanskaya, Anna; Handschuh, Helena (Ed.)
    We study the black-box function inversion problem, which is the problem of finding x[N] such that f(x)=y, given as input some challenge point y in the image of a function f:[N][N], using T oracle queries to f and preprocessed advice 01S depending on f. We prove a number of new results about this problem, as follows. 1. We show an algorithm that works for any T and S satisfying TS2maxST=(N3) . In the important setting when ST, this improves on the celebrated algorithm of Fiat and Naor [STOC, 1991], which requires TS3N3. E.g., Fiat and Naor's algorithm is only non-trivial for SN23 , while our algorithm gives a non-trivial tradeoff for any SN12 . (Our algorithm and analysis are quite simple. As a consequence of this, we also give a self-contained and simple proof of Fiat and Naor's original result, with certain optimizations left out for simplicity.) 2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query xi is chosen based entirely on and y, and not on the f(x1)f(xi−1)) that works for any T and S satisfying S=(Nlog(NT)) giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T=Npolylog(N) gives S=(NloglogN). This answers a question due to Corrigan-Gibbs and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm to work with parameters T and S satisfying T+SlogNo(N) . We also observe that our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-adaptive and its final output is always one of the oracle queries x1xT. For guess-and-check algorithms, we prove a matching lower bound, therefore completely characterizing the achievable parameters (ST) for this natural class of algorithms. (Corrigan-Gibbs and Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would imply new circuit lower bounds.) 3. We show equivalence between function inversion and a natural decision version of the problem in both the worst case and the average case, and similarly for functions f:[N][M] with different ranges. All of the above results are most naturally described in a model with shared randomness (i.e., random coins shared between the preprocessing algorithm and the online algorithm). However, as an additional contribution, we show (using a technique from communication complexity due to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness into one that does not. 
    more » « less
  2. Megow, Nicole; Smith, Adam (Ed.)
    We study the question of when an approximate search optimization problem is harder than the associated decision problem. Specifically, we study a natural and quite general model of black-box search-to-decision reductions, which we call branch-and-bound reductions (in analogy with branch-and-bound algorithms). In this model, an algorithm attempts to minimize (or maximize) a function f: D → ℝ_{≥ 0} by making oracle queries to h_f : T → ℝ_{≥ 0} satisfying min_{x ∈ S} f(x) ≤ h_f(S) ≤ γ ⋅ min_{x ∈ S} f(x) (*) for some γ ≥ 1 and any subset S in some allowed class of subsets T; of the domain D. (When the goal is to maximize f, h_f instead yields an approximation to the maximal value of f over S.) We show tight upper and lower bounds on the number of queries q needed to find even a \gamma'-approximate minimizer (or maximizer) for quite large \gamma'; in a number of interesting settings, as follows. - For arbitrary functions f : {0,1}ⁿ → ℝ_{≥ 0}, where T; contains all subsets of the domain, we show that no branch-and-bound reduction can achieve γ' ≲ γ^{n/log q}, while a simple greedy approach achieves essentially γ^{n/log q}. - For a large class of MAX-CSPs, where T = {S_w} contains each set of assignments to the variables induced by a partial assignment w, we show that no branch-and-bound reduction can do significantly better than essentially a random guess, even when the oracle h_f guarantees an approximation factor of γ ≈ 1+√{log(q)/n}. - For the Traveling Salesperson Problem (TSP), where T = {S_p} contains each set of tours extending a path p, we show that no branch-and-bound reduction can achieve γ' ≲ (γ-1) n/log q. We also prove a nearly matching upper bound in our model. These results show an oracle model in which approximate search and decision are strongly separated. (In particular, our result for TSP can be viewed as a negative answer to a question posed by Bellare and Goldwasser (SIAM J. Comput. 1994), though only in an oracle model.) We also note two alternative interpretations of our results. First, if we view h_f as a data structure, then our results unconditionally rule out black-box search-to-decision reductions for certain data structure problems. Second, if we view h_f as an efficiently computable heuristic, then our results show that any reasonably efficient branch-and-bound algorithm requires more guarantees from its heuristic than simply Eq. (*). Behind our results is a ``useless oracle lemma'' which allows us to argue that under certain conditions the oracle h_f is ``useless'' and which might be of independent interest. 
    more » « less
  3. We revisit the problem of finding B-block-long collisions in Merkle-Damg˚ard Hash Functions in the auxiliary-input random oracle model, in which an attacker gets a piece of S-bit advice about the random oracle and makes T oracle queries. Akshima, Cash, Drucker and Wee (CRYPTO 2020), based on the work of Coretti, Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for 2 ≤ B ≤ T (with respect to a random salt). The attack achieves advantage Ω( e ST B/2 n + T 2/2 n) where n is the output length of the random oracle. They conjectured that this attack is optimal. However, this so-called STB conjecture was only proved for B ≈ T and B = 2. Very recently, Ghoshal and Komargodski (CRYPTO 22) confirmed STB conjecture for all constant values of B, and provided an Oe(S 4T B2/2 n + T 2/2 n) bound for all choices of B. In this work, we prove an Oe((ST B/2 n)· max{1, ST2/2 n}+T 2/2 n) bound for every 2 < B < T. Our bound confirms the STB conjecture for ST2 ≤ 2 n, and is optimal up to a factor of S for ST2 > 2 n (note as T 2 is always at most 2n, otherwise finding a collision is trivial by the birthday attack). Our result subsumes all previous upper bounds for all ranges of parameters except for B = Oe(1) and ST2 > 2 n. We obtain our results by adopting and refining the technique of Chung, Guo, Liu, and Qian (FOCS 2020). Our approach yields more modular proofs and sheds light on how to bypass the limitations of prior techniques. Along the way, we obtain a considerably simpler and illuminating proof for B = 2, recovering the main result of Akshima, Cash, Drucker and Wee. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    The random-permutation model (RPM) and the ideal-cipher model (ICM) are idealized models that offer a simple and intuitive way to assess the conjectured standard-model security of many important symmetric-key and hash-function constructions. Similarly, the generic-group model (GGM) captures generic algorithms against assumptions in cyclic groups by modeling encodings of group elements as random injections and allows to derive simple bounds on the advantage of such algorithms. Unfortunately, both well-known attacks, e.g., based on rainbow tables (Hellman, IEEE Transactions on Information Theory ’80), and more recent ones, e.g., against the discrete-logarithm problem (Corrigan-Gibbs and Kogan, EUROCRYPT ’18), suggest that the concrete security bounds one obtains from such idealized proofs are often completely inaccurate if one considers non-uniform or preprocessing attacks in the standard model. To remedy this situation, this work defines the auxiliary-input (AI) RPM/ICM/GGM, which capture both non-uniform and preprocessing attacks by allowing an attacker to leak an arbitrary (bounded-output) function of the oracle’s function table; derives the first non-uniform bounds for a number of important practical applications in the AI-RPM/ICM, including constructions based on the Merkle-Damgård and sponge paradigms, which underly the SHA hashing standards, and for AI-RPM/ICM applications with computational security; and using simpler proofs, recovers the AI-GGM security bounds obtained by Corrigan-Gibbs and Kogan against preprocessing attackers, for a number of assumptions related to cyclic groups, such as discrete logarithms and Diffie-Hellman problems, and provides new bounds for two assumptions. An important step in obtaining these results is to port the tools used in recent work by Coretti et al. (EUROCRYPT ’18) from the ROM to the RPM/ICM/GGM, resulting in very powerful and easy-to-use tools for proving security bounds against non-uniform and preprocessing attacks. 
    more » « less